Related Articles |
EEG-based classification of lower limb motor imagery with brain network analysis.
Neuroscience. 2020 Apr 10;:
Authors: Gu L, Yu Z, Ma T, Wang H, Li Z, Fan H
Abstract
This study aims to investigate the difference in cortical signal characteristics between the left and right foot imaginary movements and to improve the classification accuracy of the experimental tasks. Raw signals were gathered from 64-channel scalp electroencephalograms of 11 healthy participants. Firstly, the cortical source model was defined with 62 regions of interest over the sensorimotor cortex (9 Brodmann areas). Secondly, functional connectivity was calculated by phase lock value for α and β rhythm networks. Thirdly, network-based statistics were applied to identify whether there existed stable and significant subnetworks that formed between the two types of motor imagery tasks. Meanwhile, ten graph theory indices were investigated for each network by t-test to determine statistical significance between tasks. Finally, sparse multinomial logistic regression (SMLR)-support vector machine (SVM), as a feature selection and classification model, was used to analyze the graph theory features. The specific time-frequency (α event-related desynchronization and β event-related synchronization) difference network between the two tasks was congregated at the midline and demonstrated significant connections in the premotor areas and primary somatosensory cortex. A few of statistically significant differences in the network properties were observed between tasks in the α and β rhythm. The SMLR-SVM classification model achieved fair discrimination accuracy between imaginary movements of the two feet (maximum 75% accuracy rate in single-trial analyses). This study reveals the network mechanism of the discrimination of the left and right foot motor imagery, which can provide a novel avenue for the BCI system by unilateral lower limb motor imagery.
PMID: 32283182 [PubMed – as supplied by publisher]