Categories
Nevin Manimala Statistics

Addressing the uncertainty of DFT-determined hydrogenation mechanisms over coinage metal surfaces

Faraday Discuss. 2021 Mar 4. doi: 10.1039/c9fd00122k. Online ahead of print.

ABSTRACT

Density functional theory (DFT) has been considered as a powerful tool for the identification of reaction mechanisms. However, it is still unclear whether the error of DFT calculations would lead to mis-identification of mechanisms. Here, taking the hydrogenation of acetylene and 1,3-butadiene as model reactions and employing a well-trained Bayesian error estimation functional with van der Waals correlation (BEEF-vdW), we try to estimate the error of DFT calculation results statistically, and therefore predict the reliability of the hydrogenation mechanisms identified. With an ensemble of 2000 functionals obtained around the BEEF-vdW functional as well as a descriptor developed to represent the possibility of different mechanisms, we found that the non-Horiuti-Polanyi mechanism is preferred on Ag(211) and Au(211), while the Horiuti-Polanyi mechanism is dominant on Cu(211). We further discovered that the descriptor is linearly correlated with the adsorption energies of reaction intermediates during acetylene and butadiene hydrogenation, and the hydrogenation of strongly adsorbed species are more likely to follow the Horiuti-Polanyi mechanism. We found the probability of following the non-HP mechanism obeys the order Cu(211) < Au(211) < Ag(211). Our work gives a more comprehensive explanation for the mechanisms of coinage metal catalyzed hydrogenation reactions, and also provides more theoretical insights into the development of new high-performance catalysts for selective hydrogenation reactions.

PMID:33660703 | DOI:10.1039/c9fd00122k

By Nevin Manimala

Portfolio Website for Nevin Manimala