Categories
Nevin Manimala Statistics

Effect of copper and zinc as sulfate or nitrate salts on soil microbiome dynamics and blaVIM-positive Pseudomonas aeruginosa survival

J Hazard Mater. 2021 Mar 11;415:125631. doi: 10.1016/j.jhazmat.2021.125631. Online ahead of print.

ABSTRACT

The exposure of soil to metals and to antibiotic resistant bacteria may lead to the progressive deterioration of soil quality. The persistence of antibiotic resistant bacteria or antibiotic resistance genes in soil can be influenced by the microbial community or by soil amendments with metal salts. This work assessed the effect of soil amendment with copper and zinc, as sulfate or nitrate salts, on the fate of a carbapenem-resistant (blaVIM+) hospital effluent isolate of Pseudomonas aeruginosa (strain H1FC49) and on the variations of the microbial community composition. Microcosms with soil aged or not with copper and zinc salts (20 mM), and inoculated with P. aeruginosa H1FC49 were monitored at 0, 7, 14 and/or 30 days, for community composition (16S rRNA gene amplicon) and strain H1FC49 persistence. Data on culturable P. aeruginosa, quantitative PCR of the housekeeping gene ecf, and the presumably acquired genes blaVIM+ and integrase (intI1), and community composition were interpreted based on descriptive statistics and multivariate analysis. P. aeruginosa and the presumably acquired genes, were quantifiable in soil for up to one month, in both metal-amended and non-amended soil. Metal amendments were associated with a significant decrease of bacterial community diversity and richness. The persistence of P. aeruginosa and acquired genes in soils, combined with the adverse effect of metals on the bacterial community, highlight the vulnerability of soil to both types of exogenous contamination.

PMID:33773246 | DOI:10.1016/j.jhazmat.2021.125631

By Nevin Manimala

Portfolio Website for Nevin Manimala