Mol Cell Proteomics. 2021 Apr 3:100076. doi: 10.1016/j.mcpro.2021.100076. Online ahead of print.
ABSTRACT
Proteogenomics approaches often struggle with the distinction between true and false peptide-to-spectrum matches as the database size enlarges. However, features extracted from tandem mass spectrometry intensity predictors can enhance the peptide identification rate and can provide extra confidence for peptide-to-spectrum matching in a proteogenomics context. To that end, features from the spectral intensity pattern predictors MS2PIP and Prosit were combined with the canonical scores from MaxQuant in the Percolator post-processing tool for protein sequence databases constructed out of ribosome profiling and nanopore RNA-seq analyses. The presented results provide evidence that this approach enhances both the identification rate as well as the validation stringency in a proteogenomic setting.
PMID:33823297 | DOI:10.1016/j.mcpro.2021.100076