Categories
Nevin Manimala Statistics

Bisphenol S induced dysregulations in liver; iron regulatory genes and inflammatory mediators in male Wistar rats

Environ Sci Pollut Res Int. 2022 Jun 30. doi: 10.1007/s11356-022-21672-2. Online ahead of print.

ABSTRACT

Bisphenol S (BPS), an analog of bisphenol A (BPA), has been frequently detected in consumer products, food wrappers, plastics, and thermal papers. Since the liver is a hub of metabolic and detoxification pathways, thus intimately related to BPS presence in the environment and body. The current study was designed to investigate the effects of BPS administration in an animal model. Twenty-five male Wistar rats weighing 175 ± 25 g were randomly divided into control and treated groups. The control group was further divided into group I (no treatment) and group II (corn oil), whereas the treatment group was divided into D-I (40 mg/kg/day), D-II (200 mg/kg/day), and D-III (400 mg/kg/day) groups, getting oral doses of BPS for 15 days. Data analysis showed a significant statistical increase in hepatic enzymes ALT (33.4%), AST (25.4%), and ALP (529.6%) in the D-III group along with the development of hypercholesterolemia and hypertriglyceridemia in all BPS groups. Aberrant mRNA expressions of some key hepatic iron regulatory genes and inflammatory mediators were evident through qRT-PCR. Bisphenol S caused congestion of central vein from mild to moderate in hepatic sections. In conclusion, our investigation insinuates BPS intoxication potential and therefore may not be a safe alternative to BPA.

PMID:35771333 | DOI:10.1007/s11356-022-21672-2

By Nevin Manimala

Portfolio Website for Nevin Manimala