Categories
Nevin Manimala Statistics

E.P.A.S.S: Electroanalytical Pillbox Assessment Sensor System, A Case Study Using Metformin Hydrochloride

Anal Chem. 2022 Jul 22. doi: 10.1021/acs.analchem.2c00611. Online ahead of print.

ABSTRACT

Adulteration of medications is an emerging and significant threat to human health and well-being, even though adulterants are still often not considered seriously in clinical or forensic toxicology. Screening of drug adulterations is a major challenge and concern for regulatory authorities worldwide. Metformin hydrochloride, an important drug to treat diabetes, is found to be adulterated worldwide and a major reason to worry about the health and safety procedure. We have demonstrated a first-of-a-kind electrochemical biomedical device utilizing exfoliated graphene oxide (GO)─Nafion-modified customized gold screen-printed electrodes (spiral electrochemical notification-coupled electrode, SENCE), driven by electrochemical adsorptive stripping voltammetry, to identify the trace level adulteration in metformin. The GO-Nafion-SPE interface has been characterized by powder X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis, and Fourier transform infrared. Custom-made screen-printed SENCEs have been functionalized with GO nanoparticles (transducer) to obtain a fingerprint signal response of metformin using differential pulse voltammetry. A linear calibrated dose response has been obtained with n = 3 repetitions with a low limit of detection of 10 ppm for metformin. We have used the sensing response as a function of adulteration, and it is extensively supported by rigorous statistical analysis along with the help of the machine learning tool. This is a first-of-its-kind IoT-enabled electrochemical sensor and analysis platform that can detect drug adulteration as a low, medium, and high output.

PMID:35867902 | DOI:10.1021/acs.analchem.2c00611

By Nevin Manimala

Portfolio Website for Nevin Manimala