Categories
Nevin Manimala Statistics

MALDI-TOF mass spectrometry rapid pathogen identification and outcomes of patients with bloodstream infection: A systematic review and meta-analysis

Microb Biotechnol. 2022 Aug 3. doi: 10.1111/1751-7915.14124. Online ahead of print.

ABSTRACT

There was inconsistent evidence regarding the use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for microorganism identification with/without antibiotic stewardship team (AST) and the clinical outcome of patients with bloodstream infections (BSI). In a systematic review and meta-analysis, we evaluated the effectiveness of rapid microbial identification by MALDI-TOF MS with and without AST on clinical outcomes. We searched PubMed and EMBASE databases from inception to 1 February 2022 to identify pre-post and parallel comparative studies that evaluated the use of MALDI-TOF MS for microorganism identification. Pooled effect estimates were derived using the random-effects model. Twenty-one studies with 14,515 patients were meta-analysed. Compared with conventional phenotypic methods, MALDI-TOF MS was associated with a 23% reduction in mortality (RR = 0.77; 95% CI: 0.66; 0.90; I2 = 35.9%; 13 studies); 5.07-h reduction in time to effective antibiotic therapy (95% CI: -5.83; -4.31; I2 = 95.7%); 22.86-h reduction in time to identify microorganisms (95% CI: -23.99; -21.74; I2 = 91.6%); 0.73-day reduction in hospital stay (95% CI: -1.30; -0.16; I2 = 53.1%); and US$4140 saving in direct hospitalization cost (95% CI: $-8166.75; $-113.60; I2 = 66.1%). No significant heterogeneity sources were found, and no statistical evidence for publication bias was found. Rapid pathogen identification by MALDI-TOF MS with or without AST was associated with reduced mortality and improved outcomes of BSI, and may be cost-effective among patients with BSI.

PMID:35921430 | DOI:10.1111/1751-7915.14124

By Nevin Manimala

Portfolio Website for Nevin Manimala