Nevin Manimala Statistics

Application of advanced trend analysis techniques with clustering approach for analysing rainfall trend and identification of homogenous rainfall regions in Delhi metropolitan city

Environ Sci Pollut Res Int. 2022 Aug 5. doi: 10.1007/s11356-022-22235-1. Online ahead of print.


In the era of global urbanization, the cities across the world are experiencing significant change in the climate pattern. However, analysing the trend and pattern of rainfall over the urban areas has a number of challenges such as availability of long-term data as well as the uneven distribution of rain-gauge stations. In this research, the rainfall regionalization approach has been applied along with the advanced statistical techniques for analysing the trend and pattern of rainfall in the Delhi metropolitan city. Fuzzy C-means and K-means clustering techniques have been applied for the identification of homogeneous rainfall regions while innovative trend analysis (ITA) along with the family of Mann-Kendall (MK) tests has been applied for the trend analysis of rainfall. The result shows that in all rain-gauge stations of Delhi, an increasing trend in rainfall has been recorded during 1991-2018. But the rate of increase was low as the trend slope of ITA and Sen’s slope in MK tests are low, which varies between 0.03 and 0.05 and 0.01 and 0.16, respectively. Furthermore, none of the rain-gauge stations have experienced a monotonic trend in rainfall as the null hypothesis has not been rejected (p value > 0.05) for any stations. Furthermore, the study shows that ITA has a better performance than the family of MK tests. The findings of this study may be utilized for the urban flood mitigation and solving other issues related to water resources in Delhi and other cities.

PMID:35930147 | DOI:10.1007/s11356-022-22235-1

By Nevin Manimala

Portfolio Website for Nevin Manimala