Categories
Nevin Manimala Statistics

Ballistic dynamics of flexural thermal movements in a nanomembrane revealed with subatomic resolution

Sci Adv. 2022 Aug 19;8(33):eabn8007. doi: 10.1126/sciadv.abn8007. Epub 2022 Aug 19.

ABSTRACT

Flexural oscillations of freestanding films, nanomembranes, and nanowires are attracting growing attention for their importance to the fundamental physical and optical properties and device applications of two-dimensional and nanostructured (meta)materials. Here, we report on the observation of short-time scale ballistic motion in the flexural mode of a nanomembrane cantilever, driven by thermal fluctuation of flexural phonons, including measurements of ballistic velocities and displacements performed with subatomic resolution, using a free electron edge-scattering technique. Within intervals <10 μs, the membrane moves ballistically at a constant velocity, typically ~300 μm/s, while Brownian-like dynamics emerge for longer observation periods. Access to the ballistic regime provides verification of the equipartition theorem and Maxwell-Boltzmann statistics for flexural modes and can be used in fast thermometry and mass sensing during atomic absorption/desorption processes on the membrane.

PMID:35984884 | DOI:10.1126/sciadv.abn8007

By Nevin Manimala

Portfolio Website for Nevin Manimala