Nevin Manimala Statistics

A scoring model for diagnosis of tuberculous pleural effusion

BMC Pulm Med. 2022 Sep 2;22(1):332. doi: 10.1186/s12890-022-02131-7.


BACKGROUND: Due to the low efficiency of a single clinical feature or laboratory variable in the diagnosis of tuberculous pleural effusion (TBPE), the diagnosis of TBPE is still challenging. This study aimed to build a scoring diagnostic model based on laboratory variables and clinical features to differentiate TBPE from non-tuberculous pleural effusion (non-TBPE).

METHODS: A retrospective study of 125 patients (63 with TBPE; 62 with non-TBPE) was undertaken. Univariate analysis was used to select the laboratory and clinical variables relevant to the model composition. The statistically different variables were selected to undergo binary logistic regression. Variables B coefficients were used to define a numerical score to calculate a scoring model. A receiver operating characteristic (ROC) curve was used to calculate the best cut-off value and evaluate the performance of the model. Finally, we add a validation cohort to verify the model.

RESULTS: Six variables were selected in the scoring model: Age ≤ 46 years old (4.96 points), Male (2.44 points), No cancer (3.19 points), Positive T-cell Spot (T-SPOT) results (4.69 points), Adenosine Deaminase (ADA) ≥ 24.5U/L (2.48 point), C-reactive Protein (CRP) ≥ 52.8 mg/L (1.84 points). With a cut-off value of a total score of 11.038 points, the scoring model’s sensitivity, specificity, and accuracy were 93.7%, 96.8%, and 99.2%, respectively. And the validation cohort confirms the model with the sensitivity, specificity, and accuracy of 92.9%, 93.3%, and 93.1%, respectively.

CONCLUSION: The scoring model can be used in differentiating TBPE from non-TBPE.

PMID:36056429 | DOI:10.1186/s12890-022-02131-7

By Nevin Manimala

Portfolio Website for Nevin Manimala