Categories
Nevin Manimala Statistics

Transcriptomic analysis of tuberculosis peptide-based vaccine MP3RT in humanized mice

Zhonghua Jie He He Hu Xi Za Zhi. 2022 Sep 12;45(9):894-903. doi: 10.3760/cma.j.cn112147-20220112-00045.

ABSTRACT

Objective: To identify the differentially expressed genes (DEGs) induced by tuberculosis peptide-based vaccine MP3RT in a humanized mouse model using transcriptomics technology. Methods: This study was conducted from August 2019 to February 2022. We used edgeR software to screen DEGs with a fold change greater than or equal to 1.5 and a P value less than 0.05 as screening conditions. Gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG), and protein interaction network analyses were performed on the screened DEGs. Then, these DEGs were verified by RT-qPCR and statistically analyzed by GraphPad Prism 8 software. Results: A total of 367 DEGs (214 up-regulated and 153 down-regulated) were identified by transcriptomics. Bioinformatics analysis showed that the GO enrichment of the DEGs mentioned above significantly focused on cell metabolism, growth, apoptosis, inflammation, and other terms. In contrast, the KEGG enrichment significantly focused on inflammatory pathways such as the MAPK signaling pathway. Protein interaction network analysis showed that protein Abl1 had the highest aggregation, the highest aggregation coefficient, and the best connectivity. RT-qPCR results showed that gene expressions of cpne4 (t=2.48, P=0.048 0), h2-q10 (t=2.95, P=0.025 6), mef2c (t=2.87, P=0.028 4), cr2 (t=3.23, P=0.178), ablim1 (t=2.91, P=0.033 5), dll1 (t=2.70, P=0.027 3) and ms4a2 (t=3.03, P=0.019 2) genes in the MP3RT group were significantly up-regulated than those in the PBS group, while gene expressions of cd163l1 (t=2.56, P=0.043 0), il1r1 (t=2.91, P=0.022 7) and cd34 (t=2.42, P=0.046 2) genes in the MP3RT group were significantly down-regulated than those in the PBS group. Conclusions: The MP3RT vaccine induced 367 DEGs in humanized mice, which were associated with metabolic and immune responses. Furthermore, we found that p38 MAPK and JNK/MAPK signaling pathways played an important role in the molecular mechanism of the MP3RT vaccine.

PMID:36097927 | DOI:10.3760/cma.j.cn112147-20220112-00045

By Nevin Manimala

Portfolio Website for Nevin Manimala