Categories
Nevin Manimala Statistics

Differences in Cancer Phenotypes Among Frequent CHEK2 Variants and Implications for Clinical Care-Checking CHEK2

JAMA Oncol. 2022 Sep 22. doi: 10.1001/jamaoncol.2022.4071. Online ahead of print.

ABSTRACT

IMPORTANCE: Germline CHEK2 pathogenic variants (PVs) are frequently detected by multigene cancer panel testing (MGPT), but our understanding of PVs beyond c.1100del has been limited.

OBJECTIVE: To compare cancer phenotypes of frequent CHEK2 PVs individually and collectively by variant type.

DESIGN, SETTING, AND PARTICIPANTS: This retrospective cohort study was carried out in a single diagnostic testing laboratory from 2012 to 2019. Overall, 3783 participants with CHEK2 PVs identified via MGPT were included. Medical histories of cancer in participants with frequent PVs, negative MGPT (wild type), loss-of-function (LOF), and missense were compared.

MAIN OUTCOMES AND MEASURES: Participants were stratified by CHEK2 PV type. Descriptive statistics were summarized including median (IQR) for continuous variables and proportions for categorical characteristics. Differences in age and proportions were assessed with Wilcoxon rank sum and Fisher exact tests, respectively. Frequencies, odds ratios (ORs), 95% confidence intervals were calculated, and P values were corrected for multiple comparisons where appropriate.

RESULTS: Of the 3783 participants with CHEK2 PVs, 3473 (92%) were female and most reported White race. Breast cancer was less frequent in participants with p.I157T (OR, 0.66; 95% CI, 0.56-0.78; P<.001), p.S428F (OR, 0.59; 95% CI. 0.46-0.76; P<.001), and p.T476M (OR, 0.74; 95% CI, 0.56-0.98; P = .04) PVs compared with other PVs and an association with nonbreast cancers was not found. Following the exclusion of p.I157T, p.S428F, and p.T476M, participants with monoallelic CHEK2 PV had a younger age at first cancer diagnosis (P < .001) and were more likely to have breast (OR, 1.83; 95% CI, 1.66-2.02; P < .001), thyroid (OR, 1.63; 95% CI, 1.26-2.08; P < .001), and kidney cancer (OR, 2.57; 95% CI, 1.75-3.68; P < .001) than the wild-type cohort. Participants with a CHEK2 PV were less likely to have a diagnosis of colorectal cancer (OR, 0.62; 95% CI, 0.51-0.76; P < .001) compared with those in the wild-type cohort. There were no significant differences between frequent CHEK2 PVs and c.1100del and no differences between CHEK2 missense and LOF PVs.

CONCLUSIONS AND RELEVANCE: CHEK2 PVs, with few exceptions (p.I157T, p.S428F, and p.T476M), were associated with similar cancer phenotypes irrespective of variant type. CHEK2 PVs were not associated with colorectal cancer, but were associated with breast, kidney, and thyroid cancers. Compared with other CHEK2 PVs, the frequent p.I157T, p.S428F, and p.T476M alleles have an attenuated association with breast cancer and were not associated with nonbreast cancers. These data may inform the genetic counseling and care of individuals with CHEK2 PVs.

PMID:36136322 | DOI:10.1001/jamaoncol.2022.4071

By Nevin Manimala

Portfolio Website for Nevin Manimala