Categories
Nevin Manimala Statistics

An Automated Strategy to Handle Antigenic Variability in Immunisation Protocols, Part I: Nanopore Sequencing of Infectious Agent Variants

Methods Mol Biol. 2023;2575:305-321. doi: 10.1007/978-1-0716-2716-7_16.

ABSTRACT

Infectious agents often challenge therapeutics, from antibiotics resistance to antigenic variability affecting inoculation measures. Over the last decades, genome sequencing arose as an important ally to address such challenges. In bacterial infection, whole-genome-sequencing (WGS) supports tracking pathogenic alterations affecting the human microbiome. In viral infection, the analysis of the relevant sequence of nucleotides helps with determining historical variants of a virus and elucidates details about infection clusters and their distribution. Additionally, genome sequencing is now an important step in inoculation protocols, isolating target genes to design more robust immunisation assays. Ultimately, genetic engineering has empowered repurposing at scale, allowing long-lasting repeating clinical trials to be automated within a much shorter time-frame, by adjusting existing protocols. This is particularly important during sanitary emergencies as the ones caused by the 2014 West African Ebola outbreak, the Zika virus rapid spread in both South and North America in 2015, followed by Asia in 2016, and the pandemic caused by the SARS-CoV-2, which has infected more than 187 million people and caused more than 4 million deaths, worldwide, as per July 2021 statistics. In this scenery, this chapter presents a novel fully automated strategy to handle antigenic variability in immunisation protocols. The methodology comprises of two major steps (1) nanopore sequencing of infectious agent variants – the focus is on the SARS-CoV-2 and its variants; followed by (2) mRNA vector design for immunotherapy. This chapter presents the nanopore sequencing step and Chapter 17 introduces a protocol for mRNA vector design.

PMID:36301483 | DOI:10.1007/978-1-0716-2716-7_16

By Nevin Manimala

Portfolio Website for Nevin Manimala