Categories
Nevin Manimala Statistics

Expression and Regulatory Mechanism of Autophagy-related Genes in Synovial Tissues of Patients with Rheumatoid Arthritis

Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2022 Dec;44(6):950-960. doi: 10.3881/j.issn.1000-503X.14779.

ABSTRACT

Objective To investigate the expression regulation of autophagy-related genes(ATG)and the mechanism of autophagy in rheumatoid arthritis(RA).Methods The differentially expressed genes(DEG)of RA were identified from GSE55235 and GSE55457,on the basis of which the differentially expressed autophagy-related genes(DE-ATG)were selected from the Human Autophagy Database.STRING 11.0 and GeneMANIA were used to establish protein-protein interaction networks.Further,the transcription factor-gene-miRNA co-expression network was established via NetworkAnalyst and Cytoscape.Finally,receiver operating characteristic(ROC)curve and DrugBank were employed to evaluate the efficacy of the predicted biomarkers and the performance of drugs targeting DE-ATG.GraphPad Prism 8.2.1 and R 4.0.3 were used for statistical analysis and graphics.Results A total of 485 DEG were enriched in signaling pathways such as T cell activation,hormone regulation,osteoclast differentiation,RA,and chemokines.Eleven DE-ATG regulated the expression of RUNX1,TP53,SOX2,and hsa-mir-155-5p in synovial tissues of RA patients and were involved in the response to environmental factors such as 2,3,7,8-tetrachlorodibenzodioxin and silicon dioxide.The ROC curve analysis identified the DE-ATG with good sensitivity and specificity,such as MYC,MAPK8,CDKN1A,and TNFSF10,which can be used to distinguish certain phenotypes and serve as novel biomarkers for RA.Conclusions In RA,down-regulated DE-ATG expression may promote apoptosis and lysis of chondrocytes.The identified novel biomarkers provides new ideas and methods for diagnosing and treating RA.The establishment of transcription factor-miRNA-gene co-expression network provides direct evidence for dissecting synovial inflammation and articular cartilage destruction.

PMID:36621784 | DOI:10.3881/j.issn.1000-503X.14779

By Nevin Manimala

Portfolio Website for Nevin Manimala