Categories
Nevin Manimala Statistics

Spatial monitoring of meteorological drought characteristics based on the NASA POWER precipitation product over various regions of Iran

Environ Sci Pollut Res Int. 2023 Jan 20. doi: 10.1007/s11356-023-25283-3. Online ahead of print.

ABSTRACT

Drought directly impacts the human economy and society, so a proper understanding of its spatiotemporal characteristics in different time scales and return periods can be effective in its evaluation and risk warning. In this research, the spatiotemporal variation of drought characteristics in 70 investigated stations in Iran during 1981-2020 was examined, evaluated, and compared. The Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) have been used on time scales of 1, 3, 6, 9, 12, and 24 months to calculate the meteorological drought. Drought characteristics have been calculated through the run theory method, and the correlation between these characteristics has been checked. Statistical distribution functions have been used to calculate drought characteristics for the 10-, 20-, 50-, and 100-year return periods. Results show that the duration, severity, and peak of the drought in rainy areas increase as the return period increases. The drought features obtained from the SPI and SPEI show that the average value of severity obtained based on the SPI (43.5) is higher than that of the SPEI (40.9) while the average values of the peak are 3.9 and 2.6 for SPI and SPEI, respectively. Extreme drought was identified in 1990 in all regions of Iran. The highest severity in the current study is from 1999 to 2003. At the end of this period, Iran faced wet years. These results are evident on all time scales. The results obtained in this study can identify drought-prone regions and the beneficial use of water resources in the region.

PMID:36662434 | DOI:10.1007/s11356-023-25283-3

By Nevin Manimala

Portfolio Website for Nevin Manimala