Nevin Manimala Statistics

Inference for covariate-adjusted time-dependent prognostic accuracy measures

Stat Med. 2023 Oct 15;42(23):4082-4110. doi: 10.1002/sim.9848. Epub 2023 Jul 14.


Evaluating the prognostic performance of candidate markers for future disease onset or progression is one of the major goals in medical research. A marker’s prognostic performance refers to how well it separates patients at the high or low risk of a future disease state. Often the discriminative performance of a marker is affected by the patient characteristics (covariates). Time-dependent receiver operating characteristic (ROC) curves that ignore the informativeness of the covariates will lead to biased estimates of the accuracy parameters. We propose a time-dependent ROC curve that accounts for the informativeness of the covariates in the case of censored data. We propose inverse probability weighted (IPW) estimators for estimating the proposed accuracy parameters. We investigate the performance of the IPW estimators through simulation studies and real-life data analysis.

PMID:37720987 | DOI:10.1002/sim.9848

By Nevin Manimala

Portfolio Website for Nevin Manimala