Diabetes Obes Metab. 2023 Nov 3. doi: 10.1111/dom.15326. Online ahead of print.
ABSTRACT
AIM: To investigate the sex-specific causality of body compositions in type 2 diabetes and related glycaemic traits using Mendelian randomization (MR).
MATERIALS AND METHODS: We leveraged sex-specific summary-level statistics from genome-wide association studies for three adipose deposits adjusted for body mass index and height, including abdominal subcutaneous adipose tissue, visceral adipose tissue (VATadj) and gluteofemoral adipose tissue (GFATadj), measured by MRI (20 038 women; 19 038 men), and fat mass-adjusted appendicular lean mass (ALMadj) (244 730 women; 205 513 men) in the UK Biobank. Sex-specific statistics of type 2 diabetes were from the Diabetes Genetics Replication and Meta-analysis Consortium and those for fasting glucose and insulin were from the Meta-analyses of Glucose and Insulin-related Traits Consortium. Univariable and multivariable MR (MVMR) were performed. We also performed MR analyses of anthropometric traits and genetic association analyses using individual-level data of body composition as validation.
RESULTS: Univariable MR analysis showed that, in women, higher GFATadj and ALMadj exerted a causally protective effect on type 2 diabetes (GFATadj: odds ratio [OR] 0.59, 95% confidence interval [CI; 0.50, 0.69]; ALMadj: OR 0.84, 95% CI [0.77, 0.91]) and VATadj to be riskier in glycaemic traits. MVMR showed that GFATadj retained a robust effect on type 2 diabetes (OR 0.57, 95% CI [0.42, 0.77]; P = 2.6 × 10-4 ) in women, while it was nominally significant in men (OR 0.58, 95% CI [0.35, 0.96]; P = 3.3 × 10-2 ), after adjustment for ASATadj and VATadj. MR analyses of anthropometric measures and genetic association analyses of glycaemic traits confirmed the results.
CONCLUSIONS: Body composition has a sex-specific effect on type 2 diabetes, and higher GFATadj has an independent protective effect on type 2 diabetes in both sexes.
PMID:37920887 | DOI:10.1111/dom.15326