Nevin Manimala Statistics

Artificial Intelligence Chatbots’ Understanding of the Risks and Benefits of Computed Tomography and Magnetic Resonance Imaging Scenarios

Can Assoc Radiol J. 2024 Jan 6:8465371231220561. doi: 10.1177/08465371231220561. Online ahead of print.


PURPOSE: Patients may seek online information to better understand medical imaging procedures. The purpose of this study was to assess the accuracy of information provided by 2 popular artificial intelligence (AI) chatbots pertaining to common imaging scenarios’ risks, benefits, and alternatives.

METHODS: Fourteen imaging-related scenarios pertaining to computed tomography (CT) or magnetic resonance imaging (MRI) were used. Factors including the use of intravenous contrast, the presence of renal disease, and whether the patient was pregnant were included in the analysis. For each scenario, 3 prompts for outlining the (1) risks, (2) benefits, and (3) alternative imaging choices or potential implications of not using contrast were inputted into ChatGPT and Bard. A grading rubric and a 5-point Likert scale was used by 2 independent reviewers to grade responses. Prompt variability and chatbot context dependency were also assessed.

RESULTS: ChatGPT’s performance was superior to Bard’s in accurately responding to prompts per Likert grading (4.36 ± 0.63 vs 3.25 ± 1.03 seconds, P < .0001). There was substantial agreement between independent reviewer grading for ChatGPT (κ = 0.621) and Bard (κ = 0.684). Response text length was not statistically different between ChatGPT and Bard (2087 ± 256 characters vs 2162 ± 369 characters, P = .24). Response time was longer for ChatGPT (34 ± 2 vs 8 ± 1 seconds, P < .0001).

CONCLUSIONS: ChatGPT performed superior to Bard at outlining risks, benefits, and alternatives to common imaging scenarios. Generally, context dependency and prompt variability did not change chatbot response content. Due to the lack of detailed scientific reasoning and inability to provide patient-specific information, both AI chatbots have limitations as a patient information resource.

PMID:38183235 | DOI:10.1177/08465371231220561

By Nevin Manimala

Portfolio Website for Nevin Manimala