Nevin Manimala Statistics

Cadmium induces microcytosis and anisocytosis without anaemia in hypertensive rats

Biometals. 2024 Jan 7. doi: 10.1007/s10534-023-00567-w. Online ahead of print.


Dietary cadmium (Cd2+) intake is implicated in the pathogenesis of hypertension and anaemia, but there is a paucity of information on the haematological changes in hypertensive conditions. This study, therefore, aims to evaluate the effects of Cd2+ on blood pressure (BP) and haematological indices in the Sprague-Dawley rat model. Three cohorts (n = 10 each) of control and Cd2+-fed male Sprague-Dawley rats were selected. Cd2+-exposed rats received 2.5 or 5 mg/kg b.w. cadmium chloride via gavage thrice-weekly for eight weeks, while control animals received tap water. BP and flow were measured non-invasively from rat tails twice-weekly using a CODA machine, while weights were measured thrice-weekly. Haematological indices were assessed using the Cell-Dyn Emerald Haematology Analyzer. Data were reported as mean ± SEM, and statistically analyzed using One-Way Analysis of Variance. Bonferroni post hoc test was used for multiple comparisons. Cd2+-exposure induced hypertension by significantly (p < 0.05) elevating systolic, diastolic, and mean arterial BPs, pulse pressure, and heart rate (HR), and increased (p < 0.05) blood flow. Mean cell volume (MCV) and haemoglobin (MCH) were significantly (p < 0.05) reduced, and red cell distribution width (RDW) significantly (p < 0.01) increased by exposure to 5 mg/kg b.w. Cd2+. Haemoglobin concentration (MCHC), haematocrit, haemoglobin, red blood cell, platelet, mean platelet volume, and white blood cell counts were unaffected by Cd2+-exposure. Cd2+ induced hypertension, microcytosis, hypochromicity, and anisocytosis without anaemia, which may be precursor to microcytic anaemia and coronary artery disease. This study is important in Cd2+-exposed environments and warrants further investigations.

PMID:38184813 | DOI:10.1007/s10534-023-00567-w

By Nevin Manimala

Portfolio Website for Nevin Manimala