Categories
Nevin Manimala Statistics

A game-theoretical dynamic imitation model on networks

J Math Biol. 2021 Mar 8;82(4):30. doi: 10.1007/s00285-021-01573-7.

ABSTRACT

A game-theoretical model is constructed to capture the effect of imitation on the evolution of cooperation. This imitation describes the case where successful individuals are more likely to be imitated by newcomers who will employ their strategies and social networks. Two classical repeated strategies ‘always defect (ALLD)’ and ‘tit-for-tat (TFT)’ are adopted. Mathematical analyses are mainly conducted by the method of coalescence theory. Under the assumption of a large population size and weak selection, the results show that the evolution of cooperation is promoted in this dynamic network. As we observed that the critical benefit-to-cost ratio is smaller compared to that in well-mixed populations. The critical benefit-to-cost ratio approaches a specific value which depends on three parameters, the repeated rounds of the game, the effective strategy mutation rate, and the effective link mutation rate. Specifically, for a very high value of the effective link mutation rate, the critical benefit-to-cost ratio approaches 1. Remarkably, for a low value of the effective link mutation rate, by letting the effective strategy mutation is nearly equal to zero, the critical benefit-to-cost ratio approaches [Formula: see text] for the resulting highly connected networks, which allows TFT to be evolutionary stable. It illustrates that dominance of TFTs is associated with more connected networks. This research can enrich the theory of the coevolution of game strategy and network structure with dynamic imitation.

PMID:33683438 | DOI:10.1007/s00285-021-01573-7

By Nevin Manimala

Portfolio Website for Nevin Manimala