Nevin Manimala Statistics

Clinical research progress and implications of therapeutic vaccines for cervical cancer and precancerous lesions: a qualitative systematic review

Zhonghua Zhong Liu Za Zhi. 2022 Jul 23;44(7):743-760. doi: 10.3760/cma.j.cn112152-20210824-00638.


Objective: To systematically summarize and analyze the clinical research progress of therapeutic vaccines for cervical cancer or precancerous lesions. Methods: English databases (PubMed, Embase, Web of Science, Cochrane library, Proquest, and and Chinese databases (SinoMed, CNKI, WanFang, and VIP Database) were systematically searched to collect literature on therapeutic vaccines for cervical cancer or precancerous lesions from inception to February 18, 2021. After screening, we evaluated the risk of bias of included studies, and combed the basic information of the literature, research designs, information of vaccines, study patients, outcome indicators and so on, qualitatively summarized the clinical research progress. Results: A total of 71 studies were included in this systematic review, including 14 random controlled trials, 15 quasi-random controlled trials, 4 cohort studies, 1 case-control study, 34 case series studies and 3 case reports. The study patients included women aged 15~79 with cervical cancer or precancerous lesions in 18 countries from 1989 to 2021. On the one hand, there were 40 studies on therapeutic vaccines for cervical precancerous lesions (22 867 participants), involving 21 kinds of vaccines in 6 categories. Results showed 3 marketed vaccines (Cervarix, Gardasil, Gardasil 9) as adjuvant immunotherapies were significant effective in preventing the recurrence of precancerous lesions compared with the conization only. In addition, MVA E2 vaccine had been in phase Ⅲ clinical trials as a specific therapeutic vaccine, with relative literature showing it could eliminate most high-grade precancerous lesions. Therapeutic vaccines for precancerous lesions all showed good safety. On the other hand, there were 31 studies on therapeutic vaccines for cervical cancer (781 participants), involving 19 kinds of vaccines in 7categories, with none had been marketed. 25 studies were with no control group, showing the vaccines could effectively eliminate solid tumors, prevent recurrence, and prolong the median survival time. However, the vaccines effectiveness couldn’t be statistically calculated due to the lack of a control group. As for the safety of therapeutic vaccines for cervical cancer, 9 studies showed that patients experienced serious adverse events after treatments, where 7 studies reported that serious adverse events occurred in patients couldn’t be ruled out as the results of therapeutic vaccines. Conclusions: The literature review shows that the literature evidence for the therapeutic vaccines for cervical precancerous lesions is relatively mature compared with the therapeutic vaccines for cervical cancer. The four kinds of vaccines on the market are all therapeutic vaccines for precancerous lesions, but they are generally used as vaginal infection treatments or adjuvant immunotherapies for cervical precancerous lesions, not used for the specific treatments of cervical precancerous lesions. Other specific therapeutic vaccines are in the early stage of clinical trials, mainly phase Ⅰ/Ⅱ clinical trials with small sample size. The effectiveness and safety data are limited, and further research is still needed.

PMID:35880341 | DOI:10.3760/cma.j.cn112152-20210824-00638

By Nevin Manimala

Portfolio Website for Nevin Manimala