Categories
Nevin Manimala Statistics

Repurposing of the Malaria Box for Babesia microti in mice identifies novel active scaffolds against piroplasmosis

Parasit Vectors. 2022 Sep 19;15(1):329. doi: 10.1186/s13071-022-05430-4.

ABSTRACT

BACKGROUND: An innovative approach has been introduced for identifying and developing novel potent and safe anti-Babesia and anti-Theileria agents for the control of animal piroplasmosis. In the present study, we evaluated the inhibitory effects of Malaria Box (MBox) compounds (n = 8) against the growth of Babesia microti in mice and conducted bioinformatics analysis between the selected hits and the currently used antibabesial drugs, with far-reaching implications for potent combinations.

METHODS: A fluorescence assay was used to evaluate the in vivo inhibitory effects of the selected compounds. Bioinformatics analysis was conducted using hierarchical clustering, distance matrix and molecular weight correlation, and PubChem fingerprint. The compounds with in vivo potential efficacy were selected to search for their target in the piroplasm parasites using quantitative PCR (qPCR).

RESULTS: Screening the MBox against the in vivo growth of the B. microti parasite enabled the discovery of potent new antipiroplasm drugs, including MMV396693 and MMV665875. Interestingly, statistically significant (P < 0.05) downregulation of cysteine protease mRNA levels was observed in MMV665875-treated Theileria equi in vitro culture in comparison with untreated cultures. MMV396693/clofazimine and MMV665875/atovaquone (AV) showed maximum structural similarity (MSS) with each other. The distance matrix results indicate promising antibabesial efficacy of combination therapies consisting of either MMV665875 and AV or MMV396693 and imidocarb dipropionate (ID).

CONCLUSIONS: Inhibitory and hematology assay results suggest that MMV396693 and MMV665875 are potent antipiroplasm monotherapies. The structural similarity results indicate that MMV665875 and MMV396693 have a similar mode of action as AV and ID, respectively. Our findings demonstrated that MBox compounds provide a promising lead for the development of new antibabesial therapeutic alternatives.

PMID:36123705 | DOI:10.1186/s13071-022-05430-4

By Nevin Manimala

Portfolio Website for Nevin Manimala