Categories
Nevin Manimala Statistics

Genetic variety of ORF3a shapes SARS-CoV-2 fitness through modulation of lipid droplet

J Med Virol. 2023 Mar 2. doi: 10.1002/jmv.28630. Online ahead of print.

ABSTRACT

SARS-CoV-2 infection leads to the accumulation of lipid droplet (LD), the central hubs of the lipid metabolism, in vitro or in type II pneumocytes and monocytes from COVID-19 patients and blockage of LD formation by specific inhibitors impedes SARS-CoV-2 replication. Here, we showed that ORF3a is necessary and sufficient to trigger LD accumulation during SARS-CoV-2 infection, leading to efficient virus replication. Although highly mutated during evolution, ORF3a-mediated LD modulation is conserved in most SARS-CoV-2 variants except the Beta strain and is a major difference between SARS-CoV and SARS-CoV-2 that depends on the genetic variations on the amino acid position 171, 193, and 219 of ORF3a. Importantly, T223I substitution in recent Omicron strains (BA.2-BF.8) impairs ORF3a-Vps39 association and LD accumulation, leading to less efficient replication and potentially contributing to lower pathogenesis of the Omicron strains. Our work characterized how SARS-CoV-2 modulates cellular lipid homeostasis to benefit its replication during virus evolution, making ORF3a-LD axis a promising drug target for the treatment of COVID-19. This article is protected by copyright. All rights reserved.

PMID:36861654 | DOI:10.1002/jmv.28630

By Nevin Manimala

Portfolio Website for Nevin Manimala