Categories
Nevin Manimala Statistics

Six Weeks of Unilateral Flywheel Hip-Extension and Leg-Curl Training Improves Flywheel Eccentric Peak Power but Does Not Enhance Hamstring Isokinetic or Isometric Strength

Int J Sports Physiol Perform. 2023 Oct 14:1-10. doi: 10.1123/ijspp.2023-0035. Online ahead of print.

ABSTRACT

PURPOSE: This preregistered trial investigated how 6 weeks of unilateral flywheel leg-curl and hip-extension training impact isokinetic, isometric, and flywheel strength and power outcomes.

METHODS: The study involved 11 male university athletes (age 22 [2] y; body mass 77.2 [11.3] kg; height 1.74 [0.09] m) with one leg randomly allocated to flywheel training and one leg to control. Unilateral eccentric and isometric knee-flexion torque and flywheel unilateral leg-curl and hip-extension peak power were tested. Training intensity and volume (3-4 sets of 6 + 2 repetitions) were progressively increased.

RESULTS: The intervention enhanced hip-extension concentric (P < .01, d = 1.76, large) and eccentric (P < .01, d = 1.33, large) peak power more than the control (significant interaction effect). Similarly, eccentric (P = .023, d = 1.05, moderate) peak power was enhanced for the leg curl. No statistically significant differences between conditions were found for isokinetic eccentric (P = .086, d = 0.77, moderate) and isometric (P = .431, d = 0.36, small) knee-flexor strength or leg-curl concentric peak power (P = .339, d = 0.52, small). Statistical parametric mapping analysis of torque-angle curves also revealed no significant (P > .05) time-limb interaction effect at any joint angle.

CONCLUSION: Unilateral flywheel hamstring training improved knee-flexor eccentric peak power during unilateral flywheel exercise but not flywheel concentric, isokinetic eccentric, or isometric (long-lever) knee-flexor strength.

PMID:37917962 | DOI:10.1123/ijspp.2023-0035

By Nevin Manimala

Portfolio Website for Nevin Manimala