Nevin Manimala Statistics

Use of cortical hemodynamic responses in digital therapeutics for upper limb rehabilitation in patients with stroke

J Neuroeng Rehabil. 2024 Jul 10;21(1):115. doi: 10.1186/s12984-024-01404-y.


BACKGROUND: Stroke causes long-term disabilities, highlighting the need for innovative rehabilitation strategies for reducing residual impairments. This study explored the potential of functional near-infrared spectroscopy (fNIRS) for monitoring cortical activation during rehabilitation using digital therapeutics.

METHODS: This cross-sectional study included 18 patients with chronic stroke, of whom 13 were men. The mean age of the patients was 67.0 ± 7.1 years. Motor function was evaluated through various tests, including the Fugl-Meyer assessment for upper extremity (FMA-UE), grip and pinch strength test, and box and block test. All the patients completed the digital rehabilitation program (MotoCog®, Cybermedic Co., Ltd., Republic of Korea) while being monitored using fNIRS (NIRScout®, NIRx Inc., Germany). Statistical parametric mapping (SPM) was employed to analyze the cortical activation patterns from the fNIRS data. Furthermore, the K-nearest neighbor (K-NN) algorithm was used to analyze task performance and fNIRS data to classify the severity of motor impairment.

RESULTS: The participants showed diverse task performances in the digital rehabilitation program, demonstrating distinct patterns of cortical activation that correlated with different motor function levels. Significant activation was observed in the ipsilesional primary motor area (M1), primary somatosensory area (S1), and contralateral prefrontal cortex. The activation patterns varied according to the FMA-UE scores. Positive correlations were observed between the FMA-UE scores and SPM t-values in the ipsilesional M1, whereas negative correlations were observed in the ipsilesional S1, frontal lobe, and parietal lobe. The incorporation of cortical hemodynamic responses with task scores in a digital rehabilitation program substantially improves the accuracy of the K-NN algorithm in classifying upper limb functional levels in patients with stroke. The accuracy for tasks, such as the gas stove-operation task, increased from 44.4% using only task scores to 83.3% when these scores were combined with oxy-Hb t-values from the ipsilesional M1.

CONCLUSIONS: The results advocated the development of tailored digital rehabilitation strategies by combining the behavioral and cerebral hemodynamic data of patients with stroke. This approach aligns with the evolving paradigm of personalized rehabilitation in stroke recovery, highlighting the need for further extensive research to optimize rehabilitation outcomes.

PMID:38987817 | DOI:10.1186/s12984-024-01404-y

By Nevin Manimala

Portfolio Website for Nevin Manimala